7.9 Additive and Multiplicative Effects Network Models

7.9.1 Introduction







7.9.2 Social Relations Regression

  1. Social Relations Regression
    • additive Effect Model (ANOVA Model): iid model
    • Social Relations Model
      • Social Relations Covariance Model
    • Social Relations Regression Model
  2. Multiplicative Effect Models
    • additive & Multiplicative Effect Models

$$ \[\begin{align} &y_{i,j} &&= &&\; \; \; \; \mu && +a_{i}+b_{j}+\epsilon_{i,j} \tag{AEM, ANOVA model} \\ &y_{i,j} &&= &&\; \; \; \; \mu && +a_{i}+b_{j}+\epsilon_{i,j} \tag{SRM} \\ &y_{i,j} &&= \beta' \mathbf x_{i,j} && +\mu && +a_{i}+b_{j}+\epsilon_{i,j} \tag{SR Regression M} \\ &y_{i,j} &&=\beta^{T} \mathbf x_{i,j} && +\mathbf u_{i}^{T} \mathbf v_{j} && +{a}_{i}+b_{j}+\epsilon_{i,j} \tag{AMEM} \\ & \tag{Random effects AMEM} \\ &V &&=M(X,\beta)+U V^{T} && && +a{1}^{T}+1b^{T}+E \tag{Gibbs Sampling for the AME} \end{align}\] $$

7.9.2.1 additive Effect Model (iid model)

$$ \[\begin{alignat}{2} y_{i,j} &= &&\; \; \; \; \mu && +a_{i}+b_{j}+\epsilon_{i,j} \tag{AEM, ANOVA model} \\ y_{i,j} &= &&\; \; \; \; \mu && +a_{i}+b_{j}+\epsilon_{i,j} \tag{SRM} \\ y_{i,j} &= \beta' \mathbf x_{i,j} && +\mu && +a_{i}+b_{j}+\epsilon_{i,j} \tag{SR Regression M} \end{alignat}\] $$

  • \(a_i\): sender effect (sociomatrix 의 rowmean)
  • \(b_j\): receiver effect (sociomatrix 의 colmean)
additive Effect Model (iid model) Social Relations Model (SRM) Social Relations Regression Model
Goal Consider Dependency sender-receiver correlations (dyadic correlations) Quantify the association between a particular dyadic variable and some other dyadic or nodal variables5
(2) Limitation: Unable to represent higher-order network patterns (lack of fit)
  1. SRM 에서 \(a_i ' s , b_j s , \epsilon_{ij} '\) 들은 mean-zero random variable 들. with effects otherwise being independent 이며 이하를 따름.

\[ V a r\left[\begin{pmatrix}a_i \\ b_j\end{pmatrix}\right]=\Sigma={\left(\begin{array}{l l}{\sigma_{a}^{2}}&{\sigma_{a b}}\\ {\sigma_{a b}}&{\sigma_{b}^{2}}\end{array}\right)} \\ V a r\left[\begin{pmatrix}\epsilon_{i,j} \\ \epsilon_{j,i}\end{pmatrix}\right]=\sigma^{2} \begin{pmatrix}1 & \rho \\ \rho & 1\end{pmatrix} \]

  • \(a_i\): sender effect (row means of the sociomatrix),
  • \(b_j\): receiver effect (column means of the sociomatrix)

목표: dependency 고려

  • Social Relations Covariance Model:

You decompese the variance of \(y_{ij}\) into three parts:

\[ Var(y_{ij}) = \underbrace{\sigma^2_a }_{\text{variance of sender}} + \underbrace{\sigma^2_b }_{\text{variance of receiver}} + \underbrace{\sigma^2 }_{\text{common variance}} \]

  • \(Cov(y_{ij}, y_{ik}) = \sigma_a^2\): within-row covariance
  • \(Cov(y_{ij}, y_{kj}) = \sigma_b^2\) : within-col covariance
  • \(Cov(\underbrace{y_{ij}, y_{jk}}_{i\rightarrow j \rightarrow k}) = \sigma_{ab}\): row-col covariance
  • \(Cov(\underbrace{y_{ij}, y_{ji}}_{ i\rightarrow j \\j \rightarrow i}) = 2 \sigma_{ab} + \rho \sigma^2\): row-col covariance + reciprocity

with all other Cov b/w elements of \(\bf Y\) being 0.

  • Social Relations Regression Model:

linear regression model을 SRM 의 covariance structure 를 사용하여 combine. 그 결과값이 가장 위의 수식. 여기서 \(x_{ij}\) 는 regressor 들의 \(p\)-dimensional vector 이며, \(\beta\) 는 estimate 된 regression coefficient 들의 vector.

한계: high-order network pattern 을 드러내는 것은 불가능. (lack of fit)







7.9.3 Multiplicative Effects Models

\[ \begin{alignat}{2} y_{i,j} &=\beta^{T} \mathbf x_{i,j} && +\mathbf u_{i}^{T} \mathbf v_{j} && +{a}_{i}+b_{j}+\epsilon_{i,j} \tag{AMEM} \\ \tag{Random effects AMEM} \\ V &=M(X,\beta)+U V^{T} && && +a{1}^{T}+1b^{T}+E \tag{GS for AME} \end{alignat} \]

Goal
Multiplicative Effect Models Random effect AME model
Capture higher-order network patterns prevent overfitting & provide summaries of certain network dependencies

\[ \begin{align} y_{i,j} &=\beta^{T} \mathbf x_{i,j} +\mathbf u_{i}^{T} \mathbf v_{j} +{a}_{i}+b_{j}+\epsilon_{i,j}, && \forall i<j: \left(\epsilon_{i,j},\epsilon_{j,i}\right) \overset{iid}{\sim} N_{2} \Bigg( \mathbf 0 , \; \sigma^2 \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \Bigg) \tag{AMEM} \end{align} \]

  • Random effects AME model

\[ \begin{alignat}{2} &(\mathbf u_1, \mathbf v_1), \cdots, (\mathbf u_n, \mathbf v_n) &&\overset{iid}{\sim} N_{2r}(\mathbf 0 , \Phi) \\ & (a_1 , b_1), \cdots, (a_n , b_n) &&\overset{iid}{\sim} N_2(\mathbf 0 , \Sigma) \tag{Random effects AME} \end{alignat} \]

  • Transformation Models for Non-Gaussian:
Continuous dyadic variable Discrete dyadic variable
Gaussian AME model Binary (not friend / friend) Probit AME model
Ordinary (dislike / neutral / like) Ordinal Probit AME model
  • continuous 에는 binary, ordinary 구분 없음.
ERGM Latent Variable Models
(latent network)
(Stochastic Block Model)
AME
global properties
evaluating specific global network patterns of interest simply by including an appropriate sufficient statistic in the model Description of local, micro-level patterns of relationships among specific nodes global patterns via estimating the parameters \((\beta,\underbrace{\Sigma}_{\substack{\text{Cov of}\\\text{mean effect}}}, \underbrace{\Psi}_{\substack{\text{Cov of}\\\text{high-order}}}, \underbrace{\sigma^2 , \rho}_{\text{error}})\)
local properties local patterns via estimating the node-specific effects \((\underbrace{a_i , b_i}_{\text{mean effects}} , \underbrace{\bf u_i , \bf v_i}_{\substack{\text{high-order}\\ \text{dependency}}})\)
  • Comparisons b/w ERGMs vs. SRM

\[ P(Y)\sim\exp\left(\mu\sum_{i,j}y_{i,j}+\sum_{i} \bigg \{a_{i}\sum_{j}y_{i,j}+b_{i}\sum_{j}y_{j,i} \bigg \}+\rho\sum_{i,j}y_{i,j}y_{j,i}\right) \tag{p2 model} \]

  • p1 model:
    • \(\sum_{i,j}y_{i,j}\): sufficient statics, the total # of ties
    • \(\sum_{i,j}y_{i,j}y_{j,i}\): the # of reciprocated ties
    • \(\sum_{j}y_{i,j}\), \(\sum_{j}y_{j,i}\): in- & out-degrees
  • SRM
    • \(\mu\): overall mean of the relations
    • \(\rho\): dyadic correlations
    • \(a_i , b_i\): Heterogeneity in row & col means

p2 model extends the p1 model by including regressors (as does the SRRM). Treats the node-level parameters \(a_i\) and \(b_i\) as potentially correlated random effects (as do SRM and SRRM).

P1 model is unable to describe more complex forms of dependency such as transitivity or clustering.

P2 model or SRRM can represent some degree of higher-order dependency, still exhibit lack-of-fit and so more complex models are desired.

ERGMs approach to describe higher-order dependencies is to include additional sufficient statistics. However, it can lead to model degeneracy - How to solve?

  1. Constraining the parameter space
  2. Finding alternative summary statistics

AME Approach to Represent Complex Patterns

AME 는 low-rank Matrix \(UV'\) 를 사용하여 complex pattern 표시. \(Y_{n \times n}\)\(U_{n \times r}\)\(V_{n \times r}\) 를 사용하여 \(UV'\) 의 형으로 arbitrary degree of precision 으로 approximate 가능. AME model 은 observed network 의 model-based low-dimensional 표현 (representation) 을 제공함.

Limitation of Multiplicative Effects Approach

Not all higher-order moments can be represented by the random effects model for the multiplicative effects (Gaussian random effect model)

예를 들어 dimenison \(r=1\) 일 때,

\[ \begin{alignat}{2} &E[\gamma_{i,j}\gamma_{j,k}\gamma_{k,l}\gamma_{l,i}&&]&&=tr(\Psi^4_{uv}) = \sigma^4_{uv} \\ &E[\gamma_{i,j}\gamma_{j,k}\gamma_{k,l}&&] &&=tr(\Psi^3_{uv}) = \sigma^3_{uv} \end{alignat} \]

These moments are not separately estimable, because both completely determined by the single parameter \(\sigma_{uv}\). To separately estimate such moments requires the higher dimension, which is very tricky.

Pros of AME Models

Multiplicative effects matrix \(UV'\) 는 sociomatrix \(Y\) 의 reduced-rank representation 을 생산.

\(\Psi\) 의 estimate 는 \(u_i\)\(v_i\) 간의, network dependency 를 유도하는 것인, node heterogeneity 에 걸친 summary 를 제공한다.

multiplicative effect 는 simple random effect model 보다 훨씬 더 넓은 range 의 pattern 을 설명해내는 것이 가능.

Cons of AME models

\(\Psi\) 의 estimate 는 imcomplete summary. 이는 오직 node heterogeneity effect 에 대한 (across) Covariance 를 설명해낼 뿐이다.

potential network dependency 에 대한 제한된 summary 만을 제공.

higher-dependency 는 다소 모호 (opaque) 한 채로 남음.

목적이 특정한 종류의 higher-order network dependencies 를 측정하고자 하는 것이라면, ERMGs 쪽이 더욱 straightforward.

Block Model Latent Distance Model
Assumption Each node belongs to an unobserved latent class or “block” “stochastic equivalence” Each node has some unobserved location in a latent Euclidean “social space”
Relations b/w nodes two nodes are determined (statistically) by their block membership within-group density of ties is lower then b/w-group density the strength of a relation (prob of tie) b/w two nodes is decreasing in the distance b/w them in latent space
how to define Membership members of the same group with the same distribution of relationships to other nodes closeness b/w two nodes
useful when there exists subgroups of nodes with strong withi-group relationships
latent 와 비교시, SBM 은 large number of block 요구 SBM 과 비교시, latent에서 social space 에서 같은 위치에 존재할 경우, 2개의 node 는 stochastically equivalent

Limitation of Latent Variable Models Real networks exhibit combinations of stochastic equivalence and transitivity in varying amounts

Providing incomplete description of the heterogeneity across nodes: How to solve?

  • Latent variable models based on multiplicative effects
  • Represent both types of network patterns
  • Generalization of both models







7.9.4 Inference via Posterior Approximation

  • Gibbs Sampling for the AME \[ V =M(X,\beta)+U V^{T} +a{1}^{T}+1b^{T}+E \tag{GS for AME} \]







7.9.5 Discussion and Example with R