6.4 One-Way ANOVA
6.4.1 One-Way ANOVA
General form of One-Way ANOVA model is
yij=μ+αi+ϵij,i=1,⋯,aj=1,⋯,Ni
n=a∑i=1NiE(ϵij)=0,Var(ϵij)=σ2,Cov(ϵij,ϵab)=0
- i-th treatment (group) effect ai
- Balanced model is ∀i:Ni=b
- Unbalanced model is ∀i:Ni’s are different
6.4.2 More About Models
- Example 4.1.1:
a=3,N1=5,N2=3,N3=3,
Y=Xβ+ϵ=(J5J500J30J30J300J3)(μα1α2α3)+(ϵ11ϵ12⋮ϵ33)
let N1=N2=N3=5. then
X=(J3⊗J5I3⊗J5)
In general, balanced design such as i=1,⋯,aj=1,⋯,b:
X=(Ja⊗JbIa⊗Jb)
- Notation: Jcr≡JrJ′c=Jr⊗Jc is a r×c matrix of 1’s.
Let Z be the model matrix for the alternative one-way analysis of variance model
yij=μi+ϵiji=1,⋯,ak=1,⋯,Ni
then, letting XiXj=δij with 1 for i=j and 0 for i≠j,
X=[JZ]=[J(X1,⋯,Xa)]⟹C(X)=C(Z)Z′Z=diag(N1,N2,⋯,Na)Z(Z′Z)−1Z′=Blkdiag[N−1iJNiNi]M=X(X′X)−1X′Mα=Z∗(Z′∗Z∗)−1Z′∗=M−MJ=M−1nJnnZ∗=(I−Mj)ZM=Mj+Mα
6.4.3 Estimating and Testing Contrasts
A contrast in the one-way ANOVA
λ′β=a∑i=1λiαiwithλ′Ja+1=a∑i=1λi=0
For estimable λ′β, find ρ so that $‘X = ’ $, ρ′=(J′NiλiNi).
- Proposition 4.2.1.
λ′α=ρ′Xβ is a contrast ⟺ ρ′J=0.
- Proposition 4.2.2.
λ′α=ρ′Xβ is a contrast ⟺ Mρ∈C(Mα).
since ∑ai=1λi=0,
$ _{i=1}^a _i i ={i=1}^a _i {+ i} = {i=1}^a i y{i+} $ because μ+αi is estimable, and its unique LSE is ˉyi+.
At significance level α, H0:λ′α=0 is rejected if
$ F=(∑ai=1λiˉyi+)2∑ai=1λ2iNiMSE>F(1−α,1,dfE)⟺t =|∑ai=1λiˉyi+|√MSE(∑ai=1λ2iNi)>t(1−α2,dfE) $
6.4.4 Cochran’s Theorem
let A1,⋯,Am be n×n symmetric Matrices, and A=∑mj=1Aj with rank(Aj)=nj. consider the following four statements:
- Aj is an orthogonal projection for all j.
- A is an orthogonal projection (possibly A=I).
- AjAk=0 for all j≠k.
- ∑mj=1nj=n.
If any two of these conditions hold, then all four hold.
- Note: Cochran’s theorem is a standard result that is the basis of the ANalysis Of VAriance. If we can write the total sum of squares as a sum of sum of squares components, and if the degree of freedom add up, then the Aj must be projections, they are orthogonal to each other, and they jointly span Rn.