6.2 Introduction

6.2.1 What

for linear model \[Y = X \beta + \epsilon\]

$$ Y_{n } = \[\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}\]

; ; ; ; ; ; ;

_{(p+1) } = \[\begin{pmatrix} \beta_0 \\ \vdots \\ \beta_p \end{pmatrix}\]

; ; ; ; ; ; ;

_{n } = \[\begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}\]

\ \
\
\

X_{n (p+1)} = \[\begin{pmatrix} 1 & X_{11} & \cdots & X_{1p} \\ 1 & X_{21} & \cdots & X_{2p} \\ \vdots & & \ddots & \vdots \\ 1 & X_{n1} & \cdots & X_{np} \\ \end{pmatrix}\]

$$

  • linear regression

$$ \[\begin{alignat}{2} y_i &= \beta_0 + \beta_1 x_i &&+ \epsilon_i \tag{Simple} \\ y_i &= \beta_0 + \sum_{j=1}^p \beta_j x_{ij} &&+ \epsilon_i \tag{Multiple} \end{alignat}\] $$

  • ANOVA

$$ \[\begin{alignat}{2} y_{ij} &= \mu + \alpha_i &&+ \epsilon_{ij} \tag{One-Way} \\ y_{ij} &= \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} &&+ \epsilon_{ij} \tag{Two-Way with interaction} \end{alignat}\] $$







6.2.2 Random Vectors and Matrices

let rv \[Y = \begin{pmatrix} y_1, & \cdots &, y_n \end{pmatrix}'\] with \[E(y_i) = \mu_i , \; \; \; Var(y_i)=\sigma_{ii} \; \; (=\sigma_i^2), \; \; \; Cov(y_i , y_j) = \sigma_{ij}\].

  • define the statistics of \[Y\]

$$ \[\begin{alignat}{2} &E(Y) &&= \begin{pmatrix} E(y_1), & \cdots & E(y_n) \end{pmatrix}' = \begin{pmatrix} \mu_1, & \cdots & \mu_n \end{pmatrix}' &&= \pmb \mu \tag{Expected Value of Y elementwise as } \\ &Cov(Y) &&= E \left[ (Y-\pmb \mu) (Y-\pmb \mu) ' \right] &&= (\sigma_{ij}) \tag{Covariance Matrix} \end{alignat}\] $$

  • Note:

$$ \[\begin{alignat}{2} E(AY+\pmb b) &= A \pmb \mu + \pmb b \\ Cov(AY+\pmb b) &= A \ast Cov(Y) \ast A ' \end{alignat}\] $$

  • Prove or disprove that Cov(Y) is nonnegative definite. how?

Covariance of \[W_{r \times 1}, \; Y_{s \times 1}\] with \[E(W)=\gamma, \; E(Y) = \mu\]:

$$ \[\begin{alignat}{2} Cov(W, Y) &= E \left [(W-\gamma)(Y-\mu)' \right ]_{r \times s} && \\ Cov(AW+a, NY+b) &= A \ast Cov(W,Y) \ast B ' && \\ Cov(AW+NY) &= A \ast Cov(W) \ast A' + N \ast Cov(Y) \ast B' \\ &\; \; \; \; \; \; \; + A \ast Cov(W,Y) \ast B' + B \ast Cov(W) \ast A' \tag{why?} \end{alignat}\] $$







6.2.3 Multivariate Normal Distributions

$$

Z = (z_1 , , z_n) ’ N_n (0, ; I_n), ; ; ; ; ; z_1 , , z_n N(0,1)

$$

which means \[E(Z)=\pmb 0, \; Cov(Z)=I_n\].

\[ A_{r \times n}, \; b \in \mathbb{R}^r \]

Y has an r-dimensional MVN distribution

Definition 1.2.1. Let A be r  n and b 2 Rr . Then Y has an r-dimensional multivariate normal distribution : Y = AZ + b  Nr (b;AAT ): Theorem 1.2.2. Let Y  N(;V) and W  N(;V). Then Y and W have the same distribution (Proof: p.5)

The density of nonsingular \[Y \sim N(\mu,V)\] is given by

$$

f(y) = (2)^{-} ^{-}

$$

Theorem 1.2.3. Let Y  N(;V) and Y =

Y1 Y2 ! . Then Cov(Y1;Y2) = 0 if and only if Y1 Y2 Corollary 1.2.4. Let Y  N(; 2I) and ABT = 0. Then AY BY

Definition 1.3.1. Quadratic Form of Y: for n  n; A YTAY = X ij aijyiyj Theorem







6.2.4 Distributions of Quadratic Forms

\[E(Y) = \mu, \; Cov(Y) = V\]. then \[E(Y'AY) = tr(AV) + \mu ' A \mu\]. prf)

let’s consider \[Z \sim N_n (\mu, I_n)\]. then \[ Z'Z \sim \chi^2 \left(n, \; \dfrac{\mu' \mu}{2} \right) \tag{second one is non-centrality parameter}\]



Let \[Y \sim N(\mu , I)\] and any orthogonal projection Matrix \[M\]. then \[Y'MY \sim \chi^2 \left(r(M), \dfrac{\mu ' M \mu}{2} \right)\]



Let \[Y \sim N(\mu , \sigma^2 I)\] and any orthogonal projection Matrix \[M\]. then \[Y'MY \sim \chi^2 \left(r(M), \dfrac{\mu ' M \mu}{2\sigma^2} \right)\]



Let \[Y \sim N(\mu , M)\]with \[\mu \in \mathcal{C}(M)\] and \[M\] be an orthogonal projection Matrix. then \[Y'Y \sim \chi^2 \left(r(M), \dfrac{\mu ' M \mu}{2\sigma^2} \right)\].



let \[E(Y)=\mu, \; Cov(Y)=V\]. then \[Pr \left[ (Y-\mu) \in \mathcal{C}(V) \right]=1\].



  • Exercise 1.6. Let \[Y\] be a vector with \[E(Y) = 0\] and \[Cov(Y) = 0\]. Then \[Pr(Y = 0) = 1\].



let \[Y \sim N(\mu, \; V)\]. then \[Y' A Y \sim \chi^2 \left( tr(AV), \dfrac{\mu' A \mu}{2}\right)\], provided that 1. \[VAVAV=VAV\]. 2. \[\mu ' AVA \mu = \mu ' a \mu\]. 3. \[VAVA \mu = VA \mu\] prf)



  • Exercise 1.7.
  1. Show that if \[V\] is nonsingular, then the three conditions in Theorem 1.3.6 reduce to \[AVA = A\].
  2. Show that \[Y'V^{-} Y\] has a chi-squared distribution with \[r(V)\] degrees of freedom when \[\mu \in \mathcal{C}(V)\].



let \[Y \sim N(\mu, \; \sigma^2 I)\] and \[BA=0\]. then, for \[A=A'\], 1. \[Y'AY \perp BY\]. 2. \[Y'AY \perp Y' BY\] for \[B=B'\].



let \[Y \sim N(\mu, \; V)\] and \[A \ge 0, \; B \ge 0\], and \[VAVBV=0\]. then \[Y'AY \perp Y'BY\].



let \[Y \sim N(\mu, \; V)\]. provided that 1. \[VAVBV=0\]. 2. \[VAVB \mu = 0\]. 3. \[VBVA \mu = 0\]. 4. \[\mu ' ABV \mu = 0\].



and also conditions of above thm, 1. \[VAVAV=VAV\]. 2. \[\mu ' AVA \mu = \mu ' a \mu\]. 3. \[VAVA \mu = VA \mu\] prf)

hold for both \[Y'AY\] and \[Y'BY\], then \[Y'AY \perp Y'BY\].